
Binghamton

University

CS-220

Spring 2016

Forking Processes
Computer Systems Chapter 8.2, 8.4

Binghamton

University

CS-220

Spring 2016

Naming Clients

• Need a name/handle for each running program
• Can’t be program name, because I can run the same program concurrently

• Must be created when program starts

• Must be deleted when program ends

• process - An invocation of a program
• Process ID: a numeric identifier associated with a process (PID)

• C Standard library function calls can create new processes

• Ended by “exit” library call (in stdlib.h)

Binghamton

University

CS-220

Spring 2016

What’s in a process?

• Logical Control Flow
• A process executes instructions
• EIP points to the next instruction to execute
• After an instruction is fetched, EIP points to the next sequential

instruction
• Control flow instructions modify EIP (jump, call, ret, etc.)

• Address Space
• Memory starting at address 0x0000 0000 up to 0xFFFF FFFF
• Contains OS, Code, Heap, Stack, bss, global data, shared libraries, etc.

• Registers / Register Values

• IO resources

Binghamton

University

CS-220

Spring 2016

Abstract, Single Process View

A process executes a single stream of sequential instructions on
data in a single address space with a single set of registers. The
process also controls the set of open IO resources.

Binghamton

University

CS-220

Spring 2016

Process Hierarchy

• Processes can create new processes
• The creator is called the parent process or “ppid”

• The spawned process is called a child process

• Parent processes are responsible for their children

• In UNIX, when you log on, the OS process creates a child process
and assigns that process to you

• This is the interactive shell or GUI running on your behalf

Binghamton

University

CS-220

Spring 2016

Operating System Process Status Table

• Keeps track of every process

• Process added to OS process status table when a parent spawns a
child process

• The child process is alive (running) as long as it continues to
execute instructions

• When a child exits (or is killed), it becomes “dead”, but it is still in
the process table!

• Process table holds the return code from the process

• Process is removed from the OS process table when the parent
“reaps” the process (reads the child’s return code)

Binghamton

University

CS-220

Spring 2016

Forks

Binghamton

University

CS-220

Spring 2016

When you “fork” a single process…

• A second process is created… a child of the existing process

• The process doing the forking is the parent process

• At the point of the fork, the parent’s address space is cloned
• The child gets a FULL COPY of the parent’s address space

• At the point of the fork, the parent’s IO resources are cloned
• The child inherits a copy of the parent’s IO resources

• At the point of the fork, the parent’s register values are cloned
• Including EIP!

Binghamton

University

CS-220

Spring 2016

What does “clone” mean?
• Start out identical…

• … but as time goes by, clones diverge…

Binghamton

University

CS-220

Spring 2016

After the Fork

• Two independent copies of memory that start out identical, but
diverge as parent and child write different things in their memory

• Two independent copies of IO resources that start out pointing to
single IO resources, but may diverge as parent and child
manipulate these resources independently

• Two independent copies of Register values that start out identical,
but diverge as parent and child write different values

• No communication between parent and child through memory!

• Parent is still responsible for child.

Binghamton

University

CS-220

Spring 2016

How can you tell child from parent?

• Memory is cloned… parent and child are the same

• Register values are cloned… parent and child are the same
• Same %EIP implies the same instruction(s) are executing

• The ONLY difference between parent and child is the return value
from the “fork” function

• %eax register is different!

• For the parent, the “fork” function returns the PID of the child

• For the child, the “fork” function returns zero (0)
• Zero is not a valid PID

Binghamton

University

CS-220

Spring 2016

fork standard library call

#include <unistd.h>

pid_t pid;

…

pid = fork();

if (pid==0) { // This is the child

…

} else { // This is the parent… pid is the child pid

…

}

Both parent and child execute
independently from here on…

Only parent executes…
No child yet.

Binghamton

University

CS-220

Spring 2016

Cleaning Up After Your Kids

• When a child process exits, it posts its return code
• BUT IT STAYS ACTIVE

• Must stay active until it’s parent process reaps the child’s return code

• Parent must read the return code from its children
• Reading the return code is called reaping the child process

• When a child process has been reaped, it can be removed from OS tables

• Reaping a child process can be done with either “wait” or “waitpid” C
system library calls

• “wait” – allows you to reap any child process

• “waitpid” – allows you to reap a specific child process

• Both “wait” and “waitpid” make parent go idle until child exits

Binghamton

University

CS-220

Spring 2016

wait standard library function

#include <sys/types.h>

#include <sys/wait.h>

pid_t pid;

int childStatus;

…

pid=wait(&childStatus); // Blocks until any child pid’s status changes

if (pid==-1) { … } // error… no children to reap

else printf(“Child pid %d exited with status %d\n”,pid,childStatus);

Binghamton

University

CS-220

Spring 2016

waitpid standard library function

#include <sys/types.h>

#include <sys/wait.h>

pid_t pid;

int childStatus;

pid=fork();

…

if (pid) {

pid=waitpid(pid,&childStatus,0); // Blocks until pid’s status changes

if (pid==-1) { … } // error… pid not an unreaped child

printf(“Child pid %d exited with status %d\n”,pid,childStatus);

}

Binghamton

University

CS-220

Spring 2016

Forking Example

int common=do_common_calculation(); int cstat=-1;

pid_t pid = fork();

if (pid==0) { /* Child process */

int resultA=do_A_calculation(common);

printf(“The result of A is %d\n”,resultA);

} else { /* Parent process */

int resultB=do_B_calculation(common);

printf(“The result of B is %d\n”,resultB);

wait(&cstat);

}

printf(“%s is done\n”,pid==0?”child”:”parent”);

exit(0);

These run
simultaneously

These run
simultaneously

This runs
twice!

Wait for child
to exit

This runs
once

Binghamton

University

CS-220

Spring 2016

Forking Example

int common=do_common_calculation();
int cstat=-1; pid_t pid = fork();

if (pid==0) { …
} else { /* Parent process */

int resultB=do_B_calculation(common);
printf(“The result of B is %d\n”,resultB);

wait(&cstat);}
printf(“%s is done\n”,pid==0?”child”:”parent”);
exit(0);

if (pid==0) { /* Child process */
int resultA=do_A_calculation(common);
printf(“The result of A is %d\n”,resultA);

} else { …
}
printf(“%s is done\n”,pid==0?”child”:”parent”);
exit(0);

Parent (pid=5673) Child (pid=4783)

common=12
pid=4783
cstat=0
resultB=18

common=12
pid=0
cstat=-1
resultA=42

unix> ./forker
The result of B is 18
The result of A is 42
child is done
parent is done
unix>

Binghamton

University

CS-220

Spring 2016

“Automatic” clean-up

• C “exit” processing performs automated clean-up:
• closes any files you have left open

• free’s any space you have malloc’ed

• waits for any unreaped children

• Automatic clean-up is frowned on!
• What happens if you never get there?

• It might take days before the parent exits

• It’s messy – you know when you are done with a resource better than the
OS

Binghamton

University

CS-220

Spring 2016

Parent process keep running,
No wait – explicit or implicit!

Child is “Zombie”

Missing Exits/Waits?

int common=do_common_calculation();

int cstat=-1; pid_t pid = fork();

if (pid==0) { /* Child process */

int resultA=do_A_calculation(common);

printf(“The result of A is %d\n”,resultA);

} else { /* Parent process */

int result=do_B_calculation(common);

printf(“The result of B is %d\n”,resultB);

while(1); // infinite loop

}

printf(“%s is done\n”,pid==0?”child”:”parent”);

exit(0);
Child process returns from “main”;

implicit exit

unix> ./forker
The result of B is 18
The result of A is 42
child is done
unix>ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
5673 ttyp9 00:00:03 forker
4783 ttyp9 00:00:00 forker <defunct>
6642 ttyp9 00:00:00 ps

Binghamton

University

CS-220

Spring 2016

int common=do_common_calculation();

int cstat=-1; pid_t pid = fork();

if (pid==0) { /* Child process */

int resultA=do_A_calculation(&common);

printf(“The result of A is %d\n”,resultA);

while(1); // infinite loop

} else { /* Parent process */

int result=do_B_calculation(&common);

printf(“The result of B is %d\n”,resultB);

}

printf(“%s is done\n”,pid==0?”child”:”parent”);

exit(0);

Child process keep running

Missing Exits/Waits?

Parent process returns from “main”;
implicit exit

implicit “wait” for child
Parent remains active process!

unix> ./forker&
The result of B is 18
The result of A is 42
parent is done
unix>ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
5673 ttyp9 00:00:03 forker
4783 ttyp9 00:00:00 forker
6642 ttyp9 00:00:00 ps

Binghamton

University

CS-220

Spring 2016

Signals

• List of specific asynchronous messages to a process

• Message include (but not limited to…)
• KILL - kill the process no matter what (with no exit)

• TERM - kill the process with no exit (but can be caught)

• INT - Interrupt – kill the process with exit

• SEGV - Segmentation Violation – dump core and exit

• STOP - Stop executing instructions

• CONT – Resume executing instructions

Binghamton

University

CS-220

Spring 2016

Signals may be sent to a process

• Via keyboard:
• Ctrl+C – INT sent to process whose stdin is keyboard

• Ctrl+\ - QUIT sent to process

• Ctrl+Z – STOP sent to process

• Ctrl+B – Resume (in the background) sent to process

• Via kill command
• kill -<signal> <pid>

• Default <signal> is TERM

Binghamton

University

CS-220

Spring 2016

Signals can be “caught” and handled

• When a signal is received by a process,
• it stops executing instructions

• it checks to see if the signal can be caught

• if so, it checks to see if process has registered a handler for that signal

• if so, signal handler is invoked
• instructions in the signal handler are executed

• return code from the signal handler says…
• Resume instruction processing or

• Core dump

• exit

• terminate

Binghamton

University

CS-220

Spring 2016

Explicit kill

• Unix command “kill <pid>”
• If you own <pid>, terminates process

• While terminating, reaps child processes

• What would happen with

>kill 4783

unix> ./forker&
The result of B is 18
The result of A is 42
child is done
unix>ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
5673 ttyp9 00:00:03 forker
4783 ttyp9 00:00:00 forker <defunct>
6642 ttyp9 00:00:00 ps
unix>kill 5673
[1] Terminated
unix> ps
PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh
6648 ttyp9 00:00:00 ps

Binghamton

University

CS-220

Spring 2016

Forks and Standard Streams

• child process inherits the parent’s stdin / stdout / stderr

• If stdin is redirected from a file
• both parent and child read that file
• Separate file pointers… both parent and child read same data

• If stdin is connected to the keyboard
• parent and child both read from keyboard
• Each gets separate / independent input (I think)

• stdout/stderr
• Output from parent and child intermixed!
• Unpredictable output

Binghamton

University

CS-220

Spring 2016

Loading and Running Programs

int execve(char * filename, char *argv[], char *envp[])

• Library function in unistd.h

• <filename> – Name of ELF executable file

• <argv> –> Null terminated array of arguments

• <envp> –> Null terminated array of environment variables

• Loads executable from <filename>

• Calls “main” function, but sets return value to OS

• Never returns to calling code! (unless error occurs loading)

Binghamton

University

CS-220

Spring 2016

Over-simplified “Shell”

char cbuf[256];

pid_t cpid; int cstat;

while(gets(cbuf)) {

cpid=fork();

if (cpid==0) { execve(qfile(cbuf),qargs(cbuf),NULL); }

waitpid(cpid,&cstat,NULL);

}

exit(0);

Binghamton

University

CS-220

Spring 2016

Over-simplified “Shell” w redirection

char cbuf[256];

pid_t cpid; int cstat;

while(gets(cbuf)) {

cpid=fork();

if (cpid==0) {

stdin=fopen(qinput(cbuf),”r”);

stdout=fopen(qoutput(cbuf),”w”);

execve(qfile(cbuf),qargs(cbuf),NULL);

}

waitpid(cpid,&cstat,NULL);

}

exit(0);

Binghamton

University

CS-220

Spring 2016

Over-simplified “Shell” for background

char cbuf[256];

pid_t cpid; int cstat;

while(gets(cbuf)) {

cpid=fork();

if (cpid==0) { execve(qfile(cbuf),qargs(cbuf),NULL); }

}

while(wait(&cstat) != -1) {}; // Reap all children

exit(0);

