Binghamton CS-220

University Spring 2016

Forking Processes

Computer Systems Chapter 8.2, 8.4




Binghamton CS-220

University Spring 2016

Naming Clients

* Need a name/handle for each running program
* Can't be program name, because I can run the same program concurrently
* Must be created when program starts
* Must be deleted when program ends

* process- An invocation of a program
* Process ID: a numeric identifier associated with a process (PID)

* C Standard library function calls can create new processes
* Ended by “exit” library call (in stdlib.h)



Binghamton CS-220

University Spring 2016

What's in a process?

* Logical Control Flow
* A process executes instructions
* EIP points to the next instruction to execute

 After an instruction is fetched, EIP points to the next sequential
instruction

 Control flow instructions modify EIP (jump, call, ret, etc.)

* Address Space
* Memory starting at address 0x0000 0000 up to OxFFFF FFFF
* Contains OS, Code, Heap, Stack, bss, global data, shared libraries, etc.

* Registers / Register Values
* O resources



Binghamton CS-220

University Spring 2016

Abstract, Single Process View

A process executes a single stream of sequential instructions on
data in a single address space with a single set of registers. The
process also controls the set of open 10 resources.



Binghamton CS-220

University Spring 2016

Process Hierarchy

* Processes can create new Pprocesses

* The creator is called the parent processor “ppid”
* The spawned process is called a child process

* Parent processes are responsible for their children

* In UNIX, when you log on, the OS process creates a child process
and assigns that process to you

* This is the interactive shell or GUI running on your behalf



Binghamton CS-220

University Spring 2016

Operating System Process Status Table

* Keeps track of every process

* Process added to OS process status table when a parent spawns a
child process

* The child process is alive (running) as long as it continues to
execute instructions

* When a child exits (or is killed), it becomes “dead”, butitis still in
the process table!
* Process table holds the return code from the process

* Process is removed from the OS process table when the parent
“reaps” the process (reads the child’s return code)



Binghamton CS-220

University Spring 2016

Forks




Binghamton CS-220

University Spring 2016

When you “fork™ a single process...

* A second process is created... a child of the existing process
* The process doing the forking is the parentprocess

At the point of the fork, the parent’s address space is cloned
* The child gets a FULL COPY of the parent’s address space

At the point of the fork, the parent’s 10 resources are cloned
* The child inherits a copy of the parent’s 10 resources

At the point of the fork, the parent’s register values are cloned
* Including EIP!



Binghamton CS-220

University Spring 2016

What does “clone” mean?

e Start out identical...




Binghamton CS-220

University Spring 2016

After the Fork

* Two independent copies of memory that start out identical, but
diverge as parent and child write different things in their memory

* Two independent copies of 10 resources that start out pointing to
single 10 resources, but may diverge as parent and child
manipulate these resources independently

* Two independent copies of Register values that start out identical,
but diverge as parent and child write different values

* No communication between parent and child through memory!
* Parent is still responsible for child.



CS-220
Spring 2016

Binghamton

University

How can you tell child from parent?

* Memory is cloned... parent and child are the same

* Register values are cloned... parent and child are the same
* Same %EIP implies the same instruction(s) are executing

* The ONLY difference between parent and child is the return value

from the “fork” function

* Y%eax register is different!
* For the parent, the “fork” function returns the PID of the child

* For the child, the “fork” function returns zero (0)
e Zero isnota valid PID



Binghamton CS-220

University Spring 2016

fork standard library call

(s _ D\ Only parent executes...
#include <unistd.h> No child yet.

pid_t pid; Both parent and child execute
independently from here on...

id = fork(); _/
if (pid==0) { // This is the child

}else { // This is the parent... pid is the child pid

g Y,




Binghamton CS-220

University Spring 2016

Cleaning Up After Your Kids

* When a child process exits, it posts its return code
 BUT IT STAYS ACTIVE
* Must stay active until it’s parent process reaps the child’s return code

 Parent must read the return code from its children
* Reading the return code is called reapingthe child process
 When a child process has been reaped, it can be removed from OS tables

* Reaping a child process can be done with either “wait” or “waitpid” C
system library calls
* “wait” - allows you to reap any child process
» “waitpid” - allows you to reap a specific child process

* Both “wait” and “waitpid” make parent go idle until child exits



Binghamton CS-220

University Spring 2016

walt standard library function

#include <sys/types.h>
#include <sys/wait.h>

pid_t pid;
int childStatus;

pid=wait(&childStatus); // Blocks until any child pid’s status changes
if (pid==-1){...}// error... no children to reap
else printf(“Child pid %d exited with status %d\n”,pid,childStatus);



Binghamton CS-220

University Spring 2016

waltpid standard library function

#include <sys/types.h>
#include <sys/wait.h>

pid_t pid;
int childStatus;
pid=fork();

if (pid) {
pid=waitpid(pid,&childStatus,0); // Blocks until pid’s status changes
if (pid==-1){...}// error... pid not an unreaped child

printf(“Child pid %d exited with status %d\n”,pid,childStatus);
}



Binghamton CS-220

University Spring 2016

Forking Example

{int common=do_common_calculation(); int cstat=-1;
pid_t pid = fork();

if (pid==0) { /* Child process */
int resultA=do_A_calculation(common);
{printf(“The result of A is %d\n",resultA);}

} else { /* Parent process */ These run
int resultB=do_B_calculation(common); simultaneously
printf(“The result of B is %d\n”,resultB);

wait(&cstat); Wai':of(;( icthild

}

printf(“%s is done\n”,pid==0?"child”:”parent”);
exit(0);




Binghamton CS-220

University Spring 2016

Forking Example

int common=do_common_calculation();

Parent (pid=5673) int cstat=-1; pid_t pid = fork(); Child (pid=4783)

if (pid==0){ ... if (pid==0) { /* Child process */
} else { /* Parent process */ int resultA=do_A_calculation(common);
int resultB=do_B_calculation(common); printf(“The result of A is %d\n”,resultA);
printf(“The result of B is %d\n”,resultB); }else { ...
}
printf(“%s is done\n”,pid==07?"child”:"parent”);
exit(0);

wait(&cstat);}

printf(“%s is done\n”,pid==07?"child”:"parent”);

exit(0);

unix> ./forker
The result of Bis 18

C?g:z;g;lz The result of A is 42
f:)stat=0 child is done
resultB=18 parent is done

unix>



Binghamton CS-220

University Spring 2016

"Automatic” clean-up

* C “exit” processing performs automated clean-up:
* closes any files you have left open
* free’s any space you have malloc’ed
* waits for any unreaped children

* Automatic clean-up is frowned on!
 What happens if you never get there?
It might take days before the parent exits

* [t's messy - you know when you are done with a resource better than the
OS



Binghamton CS-220

University Spring 2016
Missing Exits/Waits? e
g . The result of B is 18
The result of A is 42
i ] child is done
int common=do_common_calculation(); Unix>ps
int cstat=-1; pid_t pid = fork(); 6;1; TTY9 0 (")F(I)N(I)%CME
. .y % . % ttyp :00:00 tcs
it (pid==0) { /* Child process */ 5673 ttyp9 00:00:03 forker
int resultA=do_A_calculation(common); |4783ttyp9 00:00:00 forker <defunct>
printf(“The result of A is %d\n”,resultA); 6642 ttypd 00:00:00 ps

} else { /* Parent process */
int result=do_B_calculation(common); Parent process keep running,
printf(“The result of B is %d\n",resultB); No wait - explicit or implicit!
while(1); // infinite loop CHIlGS Zombie

}

. “o . ) A — — 711 . ».n A
prl_ntf( %s is done\n”,pid==0?"child”:”parent”); hildprocess returns from "maii’
EXIt(O); implicit exit




Binghamton CS-220

University Spring 2016
Missing Exits/Walts? unixc> /forkerd
. The result of Bis 18
The result of A is 42
i : parent is done
int common=do_common_calculation(); .
int cstat=-1; pid_t pid = fork(); PID TTY TIME CMD
ey . L 6585 ttyp9 00:00:00 tcsh
if (pld.——O){ /* Child process /_ 5673 ttyp9  00:00:03 forker
int resultA=do_A_calculation(&common); 4783 ttyp9 00:00:00 forker
printf(“The result of A is %d\n”,resultA); 6642 ttyp? 00:00:00 ps

while(1); // infinite loop
} else { /* Parent process */

int result=do_B_calculation(&common);
printf(“The result of B is %d\n",resultB);

}

printf(“%s is done\n”,pid==0?"child”:"parent”); & procff;fp‘;ie;‘fre‘;fom ‘main’;
€X It(O), implicit “wait” for child

Parent remains active process!



Binghamton CS-220

University Spring 2016

Signals

* List of specific asynchronous messages to a process

* Message include (but not limited to...)
e KILL - Kill the process no matter what (with no exit)
 TERM - kill the process with no exit (but can be caught)
* INT - Interrupt - Kkill the process with exit
* SEGV - Segmentation Violation - dump core and exit
 STOP - Stop executing instructions
* CONT - Resume executing instructions



Binghamton CS-220

University Spring 2016

Signals may be sent to a process

* Via keyboard:
* Ctrl+C - INT sent to process whose stdin is keyboard
e Ctrl+\ - QUIT sent to process
* Ctrl4+Z - STOP sent to process
* Ctrl+B - Resume (in the background) sent to process

e Via kill command
* kill -<signal> <pid>
* Default <signal>is TERM



Binghamton CS-220

University Spring 2016

Signals can be “caught” and handled

* When a signal is received by a process,
* it stops executing instructions
* it checks to see if the signal can be caught
* if so, it checks to see if process has registered a handler for that signal

* if so, signal handler is invoked
* instructions in the signal handler are executed
* return code from the signal handler says...
* Resume instruction processing or
* Core dump
* exit
* terminate



Binghamton CS-220

University Spring 2016

Explicit kill

unix> ./forker&
The result of Bis 18
The result of A is 42
* Unix command “kill <pid>" child is done

. : : unix>ps
If you own <pid>, terminates process PID TTY TIME CMD

* While terminating, reaps child processes | 6585 ttyp9 00:00:00 tcsh

5673 ttyp9 00:00:03 forker

4783 ttyp9 00:00:00 forker <defunct>

* What would happen with 6642 ttyp9 00:00:00 ps

unix>kill 5673

[1] Terminated

>k111 4783 unix> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6648 ttyp9 00:00:00 ps




Binghamton CS-220

University Spring 2016

Forks and Standard Streams

* child process inherits the parent’s stdin / stdout / stderr

* If stdin is redirected from a file
* both parent and child read that file
 Separate file pointers... both parent and child read same data

* [f stdin is connected to the keyboard
* parent and child both read from keyboard
* Each gets separate / independent input (I think)

 stdout/stderr
e OQutput from parent and child intermixed!
* Unpredictable output



Binghamton CS-220

University Spring 2016

Loading and Running Programs

int execve(char * filename, char *argv[], char *envpl])
* Library function in unistd.h

» <filename> - Name of ELF executable file

e <argv> -> Null terminated array of arguments

e <envp> —-> Null terminated array of environment variables

* Loads executable from <filename>
e Calls “main” function, but sets return value to OS
* Never returns to calling code! (unless error occurs loading)



Binghamton CS-220

University Spring 2016

Over-simplified “Shell”

char cbuf[256];

pid_t cpid; int cstat;

while(gets(cbuf)) {
cpid=fork();
if (cpid==0) { execve(gfile(cbuf),gargs(cbuf),NULL); }
waitpid(cpid,&cstat,NULL);

5

exit(0);



CS-220
Spring 2016

Binghamton

University

Over-simplified “Shell” w redirection

char cbuf[256];
pid_t cpid; int cstat;
while(gets(cbuf)) {
cpid=fork();
if (cpid==0) {
stdin=fopen(ginput(cbuf),’r”);
stdout=fopen(goutput(cbuf),’w”);
execve(qgfile(cbuf),gargs(cbuf),NULL);
}
waitpid(cpid,&cstat,NULL);

}
exit(0);



Binghamton CS-220

University Spring 2016

Over-simplified “Shell” for background

char cbuf[256];
pid_t cpid; int cstat;
while(gets(cbuf)) {
cpid=fork();
if (cpid==0) { execve(gfile(cbuf),gargs(cbuf),NULL); }
5
while(wait(&cstat) != -1) {}; // Reap all children
exit(0);



